Abstract

Hydrogels made from structured polyprotein domains combine the properties of cross-linked polymers with the unfolding phase transition. The use of protein hydrogels as an ensemble approach to study the physics of domain unfolding is limited by the lack of scaling tools and by the complexity of the system. Here we propose a model to describe the biomechanical response of protein hydrogels based on the unfolding and extension of protein domains under force. Our model considers the contributions of the network dynamics of the molecules inside the gels, which have random cross-linking points and random topology. This model reproduces reported macroscopic viscoelastic effects and constitutes an important step toward using rheometry on protein hydrogels to scale down to the average mechanical response of protein molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.