Abstract

A 3-D modeling based on the numerical resolution of fluid flow and heat transfer for laser-cladding processes of In718 Superalloy is proposed. The implementation of developed procedures allowed us to treat the problem with specific and complex boundary conditions. The applied loading is a moving heat source that depends on process parameters such as power density, laser beam diameter and scanning speed. The effects of process parameters on the melt pool are quantitatively discussed by numerical analysis. The computational results present good coincidences with the corresponding experiments of laser cladding process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.