Abstract

Thermoelectric effects on phase change memory elements are computationally analyzed through 2-D rotationally symmetric finite-element simulations of reset operation on a Ge2Sb2Te5 (GST) mushroom cell with 10-nm critical dimension. Temperature-dependent material parameters are used to determine the thermoelectric contributions at the junctions (Peltier heat) and within GST (Thomson heat). Thermal boundary resistances at the GST interfaces enhance the Peltier heat contribution. Peak current densities and thermal gradients are in the order of 250 MA/cm2 and 50 K/nm. Overall, thermoelectric effects are shown to introduce significant voltage polarity dependence on the operation dynamics, peak temperatures, thermal gradients, volume of the molten region, energy required, and resistance contrast. Resistance contrasts of ~ 8.8 × 103 were realized with 155 μA for the positive polarity and 245 μA for the negative polarity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call