Abstract

This work reports on a new general modeling of recombination-based mechanisms related to electrically floating-body partially-depleted (PD) SOI MOSFETs. The model describes drain current overshoots induced when turning on the transistor gate and suggests a novel extraction method for the recombination lifetime in the silicon film. We show that the recombination process associated with drain current overshoots in PD silicon-on-insulator (SOI) MOSFETs takes place mainly in the depletion region and not in the neutral region as in case of pulsed MOS capacitors. Associated with existing techniques for generation lifetime extraction, our model offers, for the first time, the possibility of complete and rapid characterization for both generation and recombination lifetime using drain current transients in floating-body SOI MOSFETs. The model is used in order to characterize submicron SOI devices, allowing a thorough investigation of technological parameters impact on floating-body-induced transient mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call