Abstract

A preferential interaction quadratic isotherm model for hydrophobic interaction chromatographic systems is presented in this paper. In this isotherm, the nonlinear effect of salt on the capacity factor is described using the preferential interaction model developed by Perkins et al. [J. Chromatogr. A, 766 (1997) 1]. This is then coupled with a quadratic nonlinear isotherm to describe nonlinear adsorption behavior at high solute concentrations. The resulting preferential interaction quadratic isotherm is examined for its ability to describe solute adsorption behavior under both linear and nonlinear conditions over a wide range of salt concentrations in HIC systems. The results indicate that this isotherm is well suited for predicting nonlinear adsorption behavior in HIC systems for both proteins and low-molecular mass HIC displacers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call