Abstract

The adsorption behavior of proteins in hydrophobic interaction chromatography (HIC) was evaluated by determining the isotherms of a wide range of proteins on various HIC resin systems. Parallel batch experiments were carried out with eleven proteins on three hydrophobic resins with different ligand chemistries and densities. The effects of salt concentration, resin chemistry and protein properties on the isotherms were also examined. The resulting isotherms exhibited unique patterns of adsorption behaviors. For certain protein-resin combinations, a “critical salt behavior” was observed where the amount of protein bound to the resin increased significantly above this salt concentration. Proteins that exhibited this behavior tended to be relatively large with more solvent accessible hydrophobic surface area. Further, calculations indicated that under these conditions the occupied surface area of the adsorbed protein layer could exceed the accessible surface area. The establishment of unique classes of adsorption behavior may shed light on our understanding of the behavior of proteins in HIC systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call