Abstract
We developed a deep potential machine learning model for simulations of chemical reactions in molten alkali carbonate-hydroxide electrolyte containing dissolved CO2, using an active learning procedure. We tested the deep neural network (DNN) potential and training procedure against reaction kinetics, chemical composition, and diffusion coefficients obtained from density functional theory (DFT) molecular dynamics calculations. The DNN potential was found to match DFT results for the structural, transport, and short-time chemical reactions in the melt. Using the DNN potential, we extended the time scales of observation to 2 ns in systems containing thousands of atoms, while preserving quantum chemical accuracy. This allowed us to reach chemical equilibrium with respect to several chemical species in the melt. The approach can be generalized for a broad spectrum of chemically reactive systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.