Abstract

Environmental barrier coatings (EBCs) are an enabling technology for silicon carbide (SiC)-based ceramic matrix composites (CMCs) in extreme environments such as gas turbine engines. However, the development of new coating systems is hindered by the large design space and difficulty in predicting the properties for these materials. Density Functional Theory (DFT) has successfully been used to model and predict some thermodynamic and thermo-mechanical properties of high-temperature ceramics for EBCs, although these calculations are challenging due to their high computational costs. In this work, we use machine learning to train a deep neural network potential (DNP) for Y2Si2O7, which is then applied to calculate the thermodynamic and thermo-mechanical properties at near-DFT accuracy much faster and using less computational resources than DFT. We use this DNP to predict the phonon-based thermodynamic properties of Y2Si2O7 with good agreement to DFT and experiments. We also utilize the DNP to calculate the anisotropic, lattice direction-dependent coefficients of thermal expansion (CTEs) for Y2Si2O7. Molecular dynamics trajectories using the DNP correctly demonstrate the accurate prediction of the anisotropy of the CTE in good agreement with the diffraction experiments. In the future, this DNP could be applied to accelerate additional property calculations for Y2Si2O7 compared to DFT or experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.