Abstract
BackgroundOver 70% of Americans regularly experience stress. Chronic stress results in cancer, cardiovascular disease, depression, and diabetes, and thus is deeply detrimental to physiological health and psychological wellbeing. Developing robust methods for the rapid and accurate detection of human stress is of paramount importance.MethodsPrior research has shown that analyzing physiological signals is a reliable predictor of stress. Such signals are collected from sensors that are attached to the human body. Researchers have attempted to detect stress by using traditional machine learning methods to analyze physiological signals. Results, ranging between 50 and 90% accuracy, have been mixed. A limitation of traditional machine learning algorithms is the requirement for hand-crafted features. Accuracy decreases if features are misidentified. To address this deficiency, we developed two deep neural networks: a 1-dimensional (1D) convolutional neural network and a multilayer perceptron neural network. Deep neural networks do not require hand-crafted features but instead extract features from raw data through the layers of the neural networks. The deep neural networks analyzed physiological data collected from chest-worn and wrist-worn sensors to perform two tasks. We tailored each neural network to analyze data from either the chest-worn (1D convolutional neural network) or wrist-worn (multilayer perceptron neural network) sensors. The first task was binary classification for stress detection, in which the networks differentiated between stressed and non-stressed states. The second task was 3-class classification for emotion classification, in which the networks differentiated between baseline, stressed, and amused states. The networks were trained and tested on publicly available data collected in previous studies.ResultsThe deep convolutional neural network achieved 99.80% and 99.55% accuracy rates for binary and 3-class classification, respectively. The deep multilayer perceptron neural network achieved 99.65% and 98.38% accuracy rates for binary and 3-class classification, respectively. The networks’ performance exhibited a significant improvement over past methods that analyzed physiological signals for both binary stress detection and 3-class emotion classification.ConclusionsWe demonstrated the potential of deep neural networks for developing robust, continuous, and noninvasive methods for stress detection and emotion classification, with the end goal of improving the quality of life.
Highlights
IntroductionChronic stress results in cancer, cardiovascular disease, depression, and diabetes, and is deeply detrimental to physiological health and psychological wellbeing
Over 70% of Americans regularly experience stress
To address the challenges in manual feature engineering, we developed a deep 1D convolutional neural network and a deep multilayer perceptron neural network for stress detection and emotion classification
Summary
Chronic stress results in cancer, cardiovascular disease, depression, and diabetes, and is deeply detrimental to physiological health and psychological wellbeing. Developing robust methods for the rapid and accurate detection of human stress is of paramount importance. Chronic stress results in a weakened immune system [2], cancer [3], cardiovascular disease [3, 4], depression [5], diabetes [6, 7], and substance addiction [8]. It is of paramount importance to develop robust methods for the rapid detection of human stress. Such technologies may enable the continuous monitoring of stress. Mirsamadi et al [10] used a recurrent neural network that analyzed speech to detect stress
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.