Abstract

Critical infrastructures are becoming increasingly interdependent and vulnerable to cascading failures. Existing studies have analyzed the vulnerability of interdependent networks to cascading failures from the static perspective of network topology structure. This paper develops a more realistic cascading failures model that considers the dynamic redistribution of load in power network to explore the vulnerability of interdependent power-water networks. In this model, the critical tolerance threshold is originally proposed to indicate the vulnerability of network to cascading failures. In addition, some key parameters that are important to network vulnerability are identified and quantified through numerical simulation. Results show that cascading failures can be prevented when the values of tolerance parameter are above a critical tolerance threshold. Otherwise interdependent networks collapse after attacking a critical fraction of power nodes. Interdependent networks become more vulnerable with the increase in interdependence strength, which implies the importance of protecting those interconnected nodes to reduce the consequences of cascading failures. Interdependent networks are most vulnerable under high-load attack, which shows the significance of protecting high-load nodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call