Abstract

This brief presents a comprehensive analysis of the output-dependent modulation (ODM) in a current-steering digital-to-analog converter (CS-DAC) based on the differential-quad switching (DQS) structure. A mathematical model is proposed to accurately describe ODM, which is categorized into two types: output transition errors and boundary effect errors. A novel approach of adding isolation devices is introduced and reinterpreted to mitigate the effect of ODM. The simulation results indicate that the inclusion of isolation devices efficiently suppresses the odd harmonics at mid-to-high frequency by a value that is 13 dB lower than before. Experimental validation is conducted on a 16-bit 250 MS/s CS-DAC fabricated in a 180 nm process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call