Abstract

This paper proposes a distributed hierarchical control framework for energy storage systems (ESSs) in DC microgrid clusters, which achieves voltage regulation and current sharing for ESSs in each microgrid as well as the whole microgrid cluster. The primary control stage adopts a droop controller which only requires local information while the secondary control stage provides correction terms for ESSs within microgrids. The tertiary control stage samples the pinned ESSs in different microgrids with low sampling rate to provide the voltage setpoint, which ensures global current sharing among microgrid cluster. The corresponding multilayered event-triggered consensus algorithm for clusters is proposed to reduce the communication cost generated by operation of the distributed controller. Both the control framework and the consensus algorithm can be extended for satisfying higher dimensional regulation needs. The controller is validated in a DC microgrid cluster through simulation under different scenarios, and the results illustrate the effectiveness of the proposed controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call