Abstract
Energy security and the resilience of electricity networks have recently gained critical momentum as subjects of research. The challenges of meeting the increasing electrical energy demands and the decarbonisation efforts necessary to mitigate the effects of climate change have highlighted the importance of microgrids for the effective integration of renewable energy sources. Microgrids have been the focus of research for several years; however, there are still many unresolved challenges that need to be addressed. Energy storage systems are essential elements that provide reliability and stability in microgrids with high penetrations of renewable energy sources. This study provides a systematic review of the recent developments in the control and management of energy storage systems for microgrid applications. In the early sections, a summary of the microgrid topologies and architectures found in the recent literature is given. The main contributions and targeted applications by the energy storage systems in the microgrid applications is defined for each scenario. As various types of energy storage systems are currently being integrated for the reliable operation of the microgrids, the paper analyses the properties and limitations of the solutions proposed in the recent literature. The review that was carried out shows that a hybrid energy storage system performs better in terms of microgrid stability and reliability when compared to applications that use a simple battery energy storage system. Therefore, a case study for a DC microgrid with a hybrid energy storage system was modelled in MATLAB/Simulink. The presented results show the advantages of hybrid energy storage systems in DC microgrids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.