Abstract
Purpose – The purpose of this paper is to develop a mathematical model for optimizing the metal removal rate (MRR) through Response Surface Methodology (RSM). The developed model helps us to analyze the influence of individual input machining parameters (cutting speed, feed rate, weight percentage) on the responses in machining of Al-TiB2 composite. Design/methodology/approach – RSM is used to optimize the MRR by developing a mathematical model. Three factors, three-level box Behnken design matrix in RSM is employed to carry out the experimental investigation. The “Design Expert 8.0” software is used for regression and graphical analysis of the data are collected. The optimum values of the selected variables are obtained by solving the regression equation and by analyzing the response surface contour plots. Analysis of variance (ANOVA) is applied to check the validity of the model and for finding the significant parameters. Findings – The response surface model developed, helps to calculate the MRR at different input cutting parameters with the chosen range with more than 95 per cent confidence intervals. Originality/value – The effect of machining parameters on MRR during machining of Al-TiB2 composites using RSM has not been previously analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Multidiscipline Modeling in Materials and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.