Abstract

PurposeThe purpose of this paper is to develop a mathematical model for surface roughness and delamination through response surface methodology (RSM) and analyse the influences of the entire individual input machining parameters (cutting speed, fibre orientation angle, depth of cut and feed rate) on the responses in milling of glass fibre reinforced plastics (GFRP) composites with solid carbide end mill cutter coated with PCD.Design/methodology/approachFour factors, five level central composites and a rotatable design matrix in response surface methodology were employed to carry out the experimental investigation. “Design Expert 8.0” software was used for regression and graphical analysis of the data were collected. The optimum values of the selected variables were obtained by solving the regression equation and by analyzing the response surface contour plots. Analysis of variance (ANOVA) was applied to check the validity of the model and for finding the significant parameters.FindingsThe developed second order response surface model was used to calculate the surface roughness and delamination of the machined surfaces at different cutting conditions with the chosen range with 95 per cent confidence intervals. Using such a model, remarkable savings in time and cost can be obtained.Originality/valueThe effect of fibre orientation during milling of GFRP laminates using RSM has not been previously attempted for analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.