Abstract
Purpose – This paper aims to study the comparison between a response surface methodology (RSM) and artificial neural network (ANN) in the modelling and prediction of surface roughness during endmilling of glass-fibre-reinforced polymer composites. Design/methodology/approach – Aiming to achieve this goal, several milling experiments were performed with polycrystalline diamond inserts at different machining parameters, namely, feed rate, cutting speed, depth of cut and fibre orientation angle. Mathematical model is created using central composite face-centred second-order in RSM and the adequacy of the model was verified using analysis of variance. ANN model is created using the back propagation algorithm. Findings – With regard to the machining test, it was observed that feed rate is the dominant parameter that affects the surface roughness, followed by the fibre orientation. The comparison results show that models provide accurate prediction of surface roughness in which ANN performs better than RSM. Originality/value – The data predicted from ANN are very nearer to experimental results compared to RSM; therefore, this ANN model can be used to determine the surface roughness for various fibre-reinforced polymer composites and also for various machining parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.