Abstract

Surface roughness is a key parameter to consider in the machining of aluminum alloy. It is rendered as one of the important determinants of the performance of mechanical instruments or components. Owing to its excellent mechanical properties, and ease of machinability, Aluminum 6061 (Al6061) is rendered a popular choice in many industries. Achieving a desired surface finish is crucial for the performance and longevity of machined components. This study aimed to compare the predictive performance of the artificial neural network (ANN) model versus the response surface methodology (RSM) in the prediction of surface roughness in the turning process of Al6061. ANN performed better than RSM in the prediction of surface roughness (A20 index 0.93 and 0.86 for ANN and RSM models respectively). MAPE and sMAPE were also found to be lower in the ANN model compared with the RSM model (8.06 versus 9.69, and 0.039 versus 0.047 respectively) indicating that the ANN model had a better predictive performance compared with the RSM model. Both ANN and RSM models showed that cutting speed and feed rate were the most important determinants of surface roughness in the turning process of Al6061 in other words to achieve a smoother surface during the turning process of Al6061 high cutting speed and low feed rate should be used. The findings of this study reflect the potential utility of ANN in the prediction and subsequently optimizing cutting parameters to achieve a smoother surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.