Abstract

Two of the most important retention processes for per- and polyfluoroalkyl substances (PFAS) in groundwater likely are sorption and matrix diffusion. The objective of this study was to model concentration and mass discharge of one PFAS, perfluorooctane sulfonate (PFOS), with matrix diffusion processes incorporated using data from a highly chemically- and geologically-characterized site. When matrix diffusion is incorporated into the REMChlor-MD model for PFOS at this research site, it easily reproduces the field data for three key metrics (concentration, mass discharge, and total mass). However, the no-matrix diffusion model produced a much poorer match. Additionally, after about 40 years of groundwater transport, field data and the REMChlor-MD model both showed the majority (80%) of the measured PFOS mass that exited the source zones was located in downgradient low permeability zones due to matrix diffusion. As such, most of the PFOS mass is not available to immediately migrate downgradient via advection in the more permeable sands at this site, which has important implications for monitored natural attenuation (MNA). Plume expansion over the next 50 years is forecasted to be limited, from a 350-m plume length in 2017 to 550 m in 2070, as matrix diffusion will attenuate groundwater plumes by slowing their expansion. This phenomenon is important for constituents that do not degrade, such as PFOS, compared to those susceptible to degradation. Overall, this work shows that matrix diffusion is a relevant process in environmental PFAS persistence and slows the rate of plume expansion over time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.