Abstract

Traditional methods for the development of a neuroprosthesis to perform closed-loop stimulation can be complex and the necessary technical knowledge and experience often present a high barrier for adoption. This paper takes a novel Model-Based Design approach to simplifying such closed-loop system development, and thereby lowering the adoption barrier. This work implements a computational model of different spike detection algorithms in Simulink® and compares their performances by taking advantage of synthetic neural signals to evaluate suitability for the intended embedded implementation. Clinical Relevance--- Closed-loop systems have been demonstrated to be suitable for brain repair strategies. Coupling two different brain areas by means of a neuroprosthesis can potentially lead to restoration of communication by inducing activity-dependent plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.