Abstract

Spike detection is often the first step in neural signal processing. It has profound effects on subsequent steps down the signal processing pipeline. Most existing spike detection algorithms require manual setting of detection threshold, which is very inconvenient for long-term neural interface. Furthermore, these algorithms are usually only evaluated using simulated dataset. Few studies are devoted to evaluating how different spike detection algorithms affect decoding performance in brain-computer interface. We have proposed a new spike detection algorithm called "exponential component - power component" (EC-PC) that offers fully automatic unsupervised spike detection. In this study, we compared the performance of a motor decoding task when different spike detection algorithms were used. EC-PC is shown to produce a higher decoding accuracy compared with other existing algorithms. Our results suggest that EC-PC can help improve motor decoding performance of brain-computer interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call