Abstract

Device mobility in dense Wi-Fi networks offers several challenges. Two well-known problems related to device mobility are handover prediction and access point selection. Due to the complex nature of the radio environment, analytical models may not characterize the wireless channel, which makes the solution of these problems very difficult. Recently, cognitive network architectures using sophisticated learning techniques are increasingly being applied to such problems. In this paper, we propose data-driven machine learning (ML) schemes to efficiently solve these problems in wireless LAN (WLAN) networks. The proposed schemes are evaluated and results are compared with traditional approaches to the aforementioned problems. The results report significant improvement in network performance by applying the proposed schemes. The proposed scheme for handover prediction outperforms traditional methods i.e. received signal strength method and traveling distance method by reducing the number of unnecessary handovers by 60% and 50% respectively. Similarly, in AP selection, the proposed scheme outperforms the strongest signal first and least loaded first algorithms by achieving higher throughput gains up to 9.2% and 8% respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.