Abstract
In this article, we propose molecular implementation of the quantum logic gate originally realized by the linear triple-quantum dot array accommodating two electrons. To reach this goal we propose to employ the mixed-valence triferrocenium complex exhibiting three isomeric forms with different oxidation degrees FeIII–FeII–FeIII, FeIII–FeIII–FeII, and FeII–FeIII–FeIII, which correspond to three instant localizations of the two holes over three iron ions. The long-range interaction between the terminal metal sites is considered in the framework of the Hubbard-like Hamiltonian which accounts for the electron transfer and inter- and intrasite Coulomb repulsion and takes into account differences in the orbital energies of FeIII and FeII ions. The interaction of the electrons with the applied electric field is also included in the Hamiltonian. It is shown that due to long-range superexchange between the two electronic spins the ground state of the triferrocenium complex is always a spin-singlet, and the first e...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have