Abstract

BackgroundChlamydiae induce persistent infections, which have been associated with a wide range of chronic diseases in humans and animals. Mixed infections with Chlamydia and porcine epidemic diarrhea virus (PEDV) may result in generation of persistent chlamydial infections. To test this hypothesis, an in vitro model of dual infection with cell culture-adapted PEDV and Chlamydia abortus or Chlamydia pecorum in Vero cells was established.ResultsInfected cultures were investigated by immunofluorescence (IF), transmission electron microscopy (TEM) and re-infection experiments. By IF, Chlamydia-infected cells showed normal inclusions after 39 hpi. Dual infections with Chlamydia abortus revealed a heterogenous mix of inclusion types including small inclusions consisting of aberrant bodies (ABs), medium-sized inclusions consisting of ABs and reticulate bodies and normal inclusions. Only aberrant inclusions were observable in dual infection experiments with Chlamydia pecorum and PEDV. TEM examinations of mixed infections with Chlamydia abortus and Chlamydia pecorum revealed aberrant chlamydial inclusions containing reticulate-like, pleomorphic ABs, which were up to 2 μm in diameter. No re-differentiation into elementary bodies (EBs) was detected. In re-infection experiments, co-infected cells produced fewer EBs than monoinfected cells.ConclusionsIn the present study we confirm that PEDV co-infection alters the developmental cycle of member species of the family Chlamydiaceae, in a similar manner to other well-described persistence induction methods. Interestingly, this effect appears to be partially species-specific as Chlamydia pecorum appears more sensitive to PEDV co-infection than Chlamydia abortus, as evidenced by TEM and IF observations of a homogenous population of aberrant inclusions in PEDV - Chlamydia pecorum co-infections.

Highlights

  • Chlamydiae induce persistent infections, which have been associated with a wide range of chronic diseases in humans and animals

  • Vero cells can be co-infected with Chlamydia and ca-porcine epidemic diarrhea virus (PEDV) Immunofluorescence (IF) labeling was used to investigate the morphologic differences of Chlamydia between monoinfected and dually infected monolayers using Chlamydia and culture-adapted porcine epidemic diarrhea virus (ca-PEDV) specific antibodies

  • Syncytia were characterized by accumulation of nuclei in the center or the periphery of the multi-nucleated cells and moderate to bright, fine-granular, cytoplasmic ca-PEDV labeling (Figure 1b)

Read more

Summary

Introduction

Chlamydiae induce persistent infections, which have been associated with a wide range of chronic diseases in humans and animals. Mixed infections with Chlamydia and porcine epidemic diarrhea virus (PEDV) may result in generation of persistent chlamydial infections. To test this hypothesis, an in vitro model of dual infection with cell culture-adapted PEDV and Chlamydia abortus or Chlamydia pecorum in Vero cells was established. Acute infections in animal chlamydioses are the most commonly reported, chronic chlamydial infections are associated with a variety of diseases in humans and animals These latter infections are characterized by inflammation and scarring resulting in significant damage of the host. Chlamydiae appear to be highly prevalent but only occasionally cause enteritis They have been found in the intestine of diarrheic and healthy pigs and could be demonstrated in mixed enteric infections [5,6,7]. Biomolecular studies revealed major genomic differences between cell culture-adapted (ca)PEDV and wild type virus [10,11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call