Abstract

Mitsugumin 53 (MG53) is a member of membrane repair system in skeletal muscle. However, role(s) of MG53 in unique functions of skeletal muscle has not been addressed although MG53 is expressed only in skeletal and cardiac muscle. In the present study, MG53-binding proteins were searched among proteins mediating skeletal muscle contraction and relaxation using the binding assays of various MG53 domains and quadrupole time-of-flight mass spectrometry. MG53 binds to sarcoplasmic reticulum Ca2+-ATPase 1a (SERCA1a) via its tripartite motif (TRIM) and PRY domains. The binding was confirmed in rabbit skeletal muscle and mouse primary skeletal myotubes by co-immunoprecipitation and immunocytochemistry. MG53 knock-down in mouse primary skeletal myotubes increased Ca2+-uptake through SERCA1a (more than 35%) at micromolar Ca2+ but not at nanomolar Ca2+, suggesting that MG53 attenuates SERCA1a activity possibly during skeletal muscle contraction or relaxation but not during the resting state of skeletal muscle. In-silico studies suggest that the binding of MG53 to SERCA1a is mediated by unique ways compared with bindings by other proteins containing TRIM or PRY domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.