Abstract
Pulmonary fibrosis (PF) is an interstitial lung disease tightly associated with the disruption of mitochondrial pool homeostasis, a delicate balance influenced by functional and dysfunctional mitochondria within lung cells. Mitochondrial transfer is an emerging technology to increase functional mitochondria via exogenous mitochondrial delivery; however, the therapeutic effect on mitochondrial transfer is hampered during the PF process by the persistence of dysfunctional mitochondria, which is attributed to impaired mitophagy. Herein, we reported engineering mitochondria mediated by mitophagy-enhanced nanoparticle (Mito-MEN), which promoted synchronal regulation of functional and dysfunctional mitochondria for treating PF. Mitophagy-enhanced nanoparticles (MENs) were fabricated through the encapsulation of Parkin mRNA, and the electrostatic interaction favored MENs to anchor isolated healthy mitochondria for the construction of Mito-MEN. Mito-MEN increased the load of functional exogenous mitochondria by enhancing mitochondrial delivery efficiency and promoted mitophagy of dysfunctional endogenous mitochondria. In a bleomycin (BLM)-induced PF mouse model, Mito-MEN repaired mitochondrial function and efficiently relieved PF-related phenotypes. This study provides a powerful tool for synchronal adjustment of mitochondrial pool homeostasis and offers a translational approach for pan-mitochondrial disease therapies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.