Abstract

Although required for life, paradoxically, mitochondria are often essential for initiating apoptotic cell death. Mitochondria regulate caspase activation and cell death through an event termed mitochondrial outer membrane permeabilization (MOMP); this leads to the release of various mitochondrial intermembrane space proteins that activate caspases, resulting in apoptosis. MOMP is often considered a point of no return because it typically leads to cell death, even in the absence of caspase activity. Because of this pivotal role in deciding cell fate, deregulation of MOMP impacts on many diseases and represents a fruitful site for therapeutic intervention. Here we discuss the mechanisms underlying mitochondrial permeabilization and how this key event leads to cell death through caspase-dependent and -independent means. We then proceed to explore how the release of mitochondrial proteins may be regulated following MOMP. Finally, we discuss mechanisms that enable cells sometimes to survive MOMP, allowing them, in essence, to return from the point of no return.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.