Abstract
In recent years, significant advances have been made in understanding the intricate details of the mechanisms underlying alternative lengthening of telomeres (ALT). Studies of a specialized DNA strand break repair mechanism, known as break-induced replication, and the advent of telomere-specific DNA damaging strategies and proteomic methodologies to profile the ribonucleoprotein composition of telomeres enabled the discovery of networks of proteins that coordinate the stepwise homology-directed DNA repair and DNA synthesis processes of ALT. These networks couple mediators of homologous recombination, DNA template-switching, long-range template-directed DNA synthesis, and DNA strand resolution with SUMO-dependent liquid condensate formation to create discrete nuclear bodies where telomere extension occurs. This review will discuss the recent findings of how these networks may cooperate to mediate telomere extension by the ALT mechanism and their impact on telomere function and integrity in ALT cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.