Abstract
Mitochondrial morphology within cells is controlled by precisely regulated rates of fusion and fission . During programmed cell death (PCD), mitochondria undergo extensive fragmentation and ultimately caspase-independent elimination through a process known as mitoptosis . Though this increased fragmentation is due to increased fission through the recruitment of the dynamin-like GTPase Drp1 to mitochondria , as well as to a block in mitochondrial fusion , cellular mechanisms underlying these processes remain unclear. Here, we describe a mechanism for the increased mitochondrial Drp1 levels and subsequent stimulation of mitochondrial fission seen during PCD. We observed Bax/Bak-mediated release of DDP/TIMM8a, a mitochondrial intermembrane space (IMS) protein , into the cytoplasm, where it binds to and promotes the mitochondrial redistribution of Drp1, a mediator of mitochondrial fission. Using both loss- and gain-of-function assays, we also demonstrate that the Drp1- and DDP/TIMM8a-dependent mitochondrial fragmentation observed during PCD is an important step in mitoptosis, which in turn is involved in caspase-independent cell death. Thus, following Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), IMS proteins released comprise not only apoptogenic factors such as cytochrome c involved in caspase activation but also DDP/TIMM8a, which activates Drp1-mediated fission to promote mitochondrial fragmentation and subsequently elimination during PCD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.