Abstract

Neuronal apoptosis is a central hallmark of cerebral ischemia, which is serious threats to human health. Notch1 signaling pathway and three members of miR-200 family, miR-429, miR-200a and miR-200b, are reported to have tight connection with hypoxia-induced injury. However, their mutual regulation relationship and their roles in neuronal apoptosis caused by hypoxia are rarely reported. In the present study, differentiated pheochromocytoma (PC12) cells were treated with chemical hypoxia inducer, cobalt chloride (CoCl2) to establish in vitro neuronal hypoxia model. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, Western blot assay and Hoechst staining indicated that CoCl2 caused apoptosis of PC12 cells along with the activation of Notch1 signallilng pathway. The treatment of N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butylester (DAPT) inhibited Notch1 signaling pathway and attenuated the apoptosis induced by CoCl2. Real-time polymerase chain reaction (RT-PCR) showed that expressions of miR-429/200a/200b were dynamically changed during the treatment of CoCl2, and significantly decreased after 12-hour treatment of CoCl2. Overexpression of miR-429/200a/200b inhibited the Notch1 signaling pathway and suppressed CoCl2-induced apoptosis in PC12 cells. These results may clarify the roles of miR-429/200a/200b and Notch1 signaling pathway in hypoxia-induced nerve injury and provide a new theoretical basis to relieve nerve injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.