Abstract
Parkinson's disease (PD) is a degenerative brain disorder characterized by motor symptoms and loss of dopaminergic (DA) neurons in the substantia nigra. The mechanisms for DA cell death in PD have been extensively investigated using PC12 cells treated with a dopamine neurotoxin 6-hydroxydopamine (6-OHDA). 6-OHDA may induce both autophagy and apoptosis in PC12 cells. However, it remains unclear whether crosstalk occurs between autophagy and apoptosis in PC12 cells treated with 6-OHDA and whether Raf-1/ERK1/2 and their phosphorylation status play a role in autophagy. In this study, we used MDC staining assay and flow cytometry and found that 6-OHDA induced autophagy in PC12 cells. This induction was inhibited by the autophagy inhibitor 3-MA. Our electron microscopy observations also supported 6-OHDA induced autophagy in PC12 cells. Apoptosis of PC12 cells was increased with inhibition of autophagy by 3-MA. In addition, Inhibition of Raf-1 resulted in a decreased 6-OHDA-induced autophagy rate among PC12 cells. Phosphorylation levels of Raf-1 and ERK1/2 were increased in PC12 cells treated with 6-OHDA and inhibited by co-treatment with 6-OHDA and 3-MA. These data suggest that crosstalk between 6-OHDA-induced apoptosis and autophagy in PC12 cells may be regulated via the Raf-1/ERK1/2 signaling pathway. Our data suggest a mechanism for 6-OHDA toxicity in PC12 cells, contributing to our understanding of the pathogenesis of PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.