Abstract
Cluster of differentiation 47 (CD47) acts as an anti-engulfment signal on tumor cells, and its overexpression is correlated with poor prognosis of various malignant tumors. However, the role and mechanism of CD47 in tumor cell proliferation, migration and apoptosis remain unclarified. Emerging evidence indicates that microRNAs (miRNAs) are potential regulators to mediate CD47 generation. In this study, we found that CD47 was up-regulated while miR-133a was down-regulated in triple-negative breast cancer (TNBC) in vitro and in vivo. Moreover, we demonstrated for the first time that CD47 was a direct target of miR-133a in TNBC cells, and provided direct evidence of the inverse correlation between miR-133a and CD47 expression in TNBC. Besides, miR-133a functioned as a tumor suppressor to inhibit proliferation and migration, and promote apoptosis of TNBC cells by targeting CD47. Furthermore, overexpression of miR-133a inhibited the tumor growth of TNBC in an in vivo xenograft animal model by targeting CD47. Thus, miR-133a/CD47 axis provides new insight into the mechanism of TNBC progression and could be a promising candidate in the diagnosis and treatment of TNBC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have