Abstract

A kinetic theory of classical particles serves as a unified basis for developing a geometric 3 + 1 spacetime perspective on fluid dynamics capable of embracing both Minkowski and Galilei/Newton spacetimes. Parallel treatment of these cases on as common a footing as possible reveals that the particle four-momentum is better regarded as comprising momentum and inertia rather than momentum and energy; and, consequently, that the object now known as the stress-energy or energy-momentum tensor is more properly understood as a stress-inertia or inertia-momentum tensor. In dealing with both fiducial and comoving frames as fluid dynamics requires, tensor decompositions in terms of the four-velocities of observers associated with these frames render use of coordinate-free geometric notation not only fully viable, but conceptually simplifying. A particle number four-vector, three-momentum ( 1 , 1 ) tensor, and kinetic energy four-vector characterize a simple fluid and satisfy balance equations involving spacetime divergences on both Minkowski and Galilei/Newton spacetimes. Reduced to a fully 3 + 1 form, these equations yield the familiar conservative formulations of special relativistic and non-relativistic fluid dynamics as partial differential equations in inertial coordinates, and in geometric form will provide a useful conceptual bridge to arbitrary-Lagrange–Euler and general relativistic formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.