Abstract

To further confirm the causality and stability of a second-order hyperbolic system of partial differential equations that models the relativistic dynamics of barotropic fluids with viscosity and heat conduction [H. Freistühler and B. Temple, J. Math. Phys. 59, 063101 (2018)], this paper studies the Fourier–Laplace modes of this system and shows that all such modes, relative to arbitrary Lorentz frames, (a) decay with increasing time and (b) travel at subluminal speeds. Stability is also shown for the related model of non-barotropic fluids [H. Freistühler and B. Temple, Proc. R. Soc. A 470, 20140055 (2014) and H. Freistühler and B. Temple, Proc. R. Soc. A 473, 20160729 (2017)]. Even though these properties had been known for a while in the sense of numerical evidence, the fully analytical proofs for the subluminality of modes of arbitrary wave numbers in arbitrary frames given here appear to be the first regarding any four-field formulation of dissipative relativistic fluid dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call