Abstract
Bubble columns are widely used in numerous industrial processes because of their advantages in operation, design, and maintenance compared to other multiphase reactor types. In contrast to their simple design, the generated flow conditions inside a bubble column reactor are quite complex, especially in continuous mode with counter-current liquid flow. For the design and optimization of such reactors, precise numerical simulations and modelling are needed. These simulations and models have to be validated with experimental data. For this reason, experiments were carried out in a laboratory-scale bubble column using shadow imaging and particle image velocimetry (PIV) techniques with and without counter-current liquid flow. In the experiments, two types of gases—relatively poorly soluble air and well-soluble CO2—were used and the bubbles were generated with three different capillary diameters. With changing gas and liquid flow rates, overall, 108 different flow conditions were investigated. In addition to the liquid flow fields captured by PIV, shadow imaging data were also statistically evaluated in the measurement volume and bubble parameters such as bubble diameter, velocity, aspect ratio, bubble motion direction, and inclination. The bubble slip velocity was calculated from the measured liquid and bubble velocities. The analysis of these parameters shows that the counter-current liquid flow has a noticeable influence on the bubble parameters, especially on the bubble velocity and motion direction. In the case of CO2 bubbles, remarkable bubble shrinkage was observed with counter-current liquid flow due to the enhanced mass transfer. The results obtained for bubble aspect ratio are compared to known correlations from the literature. The comprehensive and extensive bubble data obtained in this study will now be used as a source for the development of correlations needed in the validation of numerical simulations and models. The data are available from the authors on request.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.