Abstract

Recently, gate-induced drain leakage (GIDL) has become a crucial factor of current characteristics as junction doping concentration becomes more abruptly graded owing to device scaling. It should be effectively suppressed for the low-standby-power operation of ultra small metal–oxide–semiconductor field effect transistor (MOSFET) devices. In this work, the appropriate underlap length range for the effective minimization of GIDL in 20-nm-level four-terminal (4-T) fin-shaped FET (FinFET) on silicon-on-insulator (SOI) is established. In order to identify the effect of underlap length on GIDL more precisely, the source and drain (S/D) junction doping profile and the majority/minority carrier lifetimes have been extracted by the measurement of a p–n junction test element group (TEG). The TEG was fabricated under the same process conditions that were used in forming the S/D junctions of 100-nm-level 4-T SOI FinFET in our previous research. The GIDL component in the off-state current is investigated with underlap length variation along with the inspection of basic current characteristics. For low-standby-power operation, an underlap junction is more desirable than an overlap junction, and the underlap length should be at least 10 nm to suppress GIDL effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.