Abstract

Metal–ceramic composites produced by melt infiltration of ceramic preforms are studied in an optimal design context. The ceramic preforms are manufactured through a process of freeze-casting of Al 2O 3 particle suspension. The microstructure of these composites can be presented as distributions of lamellar domains. With local ceramic volume fraction and lamella orientation chosen as the design variables, a minimum compliance optimization problem is solved based on topology optimization and finite element methods for metal–ceramic samples with different geometries and boundary conditions. Micromechanical models are applied for the calculation of the effective elastic properties of the composites. Optimized local lamella orientations and ceramic contents are calculated, and the difference between the initial (specimen with constant ceramic content and orientation) and the optimized designs is analyzed. Significant reductions in absolute values of the maximum, minimum and mean values of strain fields in the optimized structures are observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.