Abstract

Offshore jacket platform is widely used as production or oil recovering platform in the shallow sea, and is also applied to the offshore wind turbine supporting structure in the recent years. The jacket structures are normally designed to be conservative and bulky according to various design codes. In this work, a structural optimization design method for jacket platform structure has been developed based on topology optimization theory. The topology optimization method is applicable at an early design stage, which can determine the initial structure and force transmission path. The whole design space is chosen as design variables, and the goal is to maximize the structural stiffness. A set of constraints based on multi-criteria design assessment is applied according to standard requirements, which includes stress, deformation, vibration and design variable constraints. The optimization results are compared with the original platform for static performance, dynamic performance and Ultimate Carrying Capacity (UCC). Results show that the optimized structure show a 13.7% reduction in the global mass, 46.31% reduction in the maximum equivalent stress, and large ultimate carrying capacity ability under the same environmental loads. It is demonstrated that the proposed topology optimization method is capable of effectively determining the optimal design of jacket platform structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call