Abstract

Milrinone is an inodilator widely used in the postoperative management of children undergoing cardiac surgery. The literature supporting its inotropic effect is sparse. We sought to study the effect of milrinone on the vasculature and its effects on the ventricular function using wave intensity analysis. We also intended to evaluate the feasibility of using wave intensity analysis by the bedside. prospective single-center observational study. PICU of a tertiary children's hospital. Children (< 18 yr) admitted to PICU following cardiac surgery who required to be commenced on a milrinone infusion. Echocardiography and Doppler ultrasound assessments for wave intensity analysis were performed prior to commencing milrinone and 4-6 hours after milrinone infusion. Wave intensity analysis was successfully performed and analyzed in 15 of 16 patients (94%). We identified three waves-a forward compression wave, backward compression wave, and forward decompression wave. The waves were described with their cumulative intensity and wave-related pressure change. There was a 26% reduction in backward compression wave cumulative intensity following the introduction of milrinone. Other variables (backward compression wave cumulative intensity/forward compression wave cumulative intensity ratio, backward compression wave wave-related pressure change, backward compression wave wave-related pressure change/forward compression wave wave-related pressure change ratio) consistent with vasodilation also decreased after milrinone. It also decreased the vascular wavespeed by 7.1% and increased the distensibility of the vessels by 14.6%. However, it did not increase forward compression wave cumulative intensity, a variable indicating the systolic force generated by the ventricle. Forward decompression wave cumulative intensity indicating ventricular early diastolic relaxation also did not change. In a cohort of children recovering in PICU after having undergone cardiac surgery, we found that milrinone acted as a vasodilator but did not demonstrate an improvement in the contractility or an improved relaxation of the left ventricle as assessed by wave intensity analysis. We were able to demonstrate the feasibility and utility of wave intensity analysis to further understand ventriculo-vascular interactions in an intensive care setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call