Abstract

Perivascular flow probes are considered the gold-standard for measuring volumetric blood flow in animal studies. Although flow probes are generally placed non-constrictively around the vessel of interest, pressure-elevating interventions performed during an experiment may lead to vessel expansion and some probe-vessel impingement, particularly in highly compliant vessels such as adult sheep aorta or major pulmonary arteries in fetus lambs. This study assessed to what extent such mild flow probe constraint may impact on wave intensity analysis. We also investigated whether errors arising from flow probe constraint could explain apparent pressure reflection indices (Rp > 1) that have been observed in fetus lamb pulmonary arteries under some experimental conditions. These questions were investigated with one-dimensional models of an adult sheep aorta and fetus lamb pulmonary artery, with a virtual flow probe incorporated as a non-linear external constraint term in the vessel constitutive equation. Model-derived flow and pressure were subjected to standard analysis procedures that would be applied experimentally (correcting for apparent velocity lags and calculating wave speed via the PU-loop method). For the adult sheep model, simulations covering a wide range of haemodynamic conditions revealed a mostly minor effect (<10%) of probe constraint on the intensity and pressure effects of the three major waves (forward compression wave, forward decompression wave, backward compression wave). Moreover, flow probe constraint had essentially no impact on Rp in the fetus lamb model, suggesting that such constraint is unlikely to be responsible for an observed Rp > 1. Mild flow probe constraint is likely to have little impact on wave intensity analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call