Abstract
Abstract. Shortwave-absorbing aerosols seasonally overlay extensive low-level stratocumulus clouds over the southeast Atlantic. While much attention has focused on the interactions between the low-level clouds and the overlying aerosols, few studies have focused on the mid-level clouds that also occur over the region. The presence of mid-level clouds over the region complicates the space-based remote-sensing retrievals of cloud properties and the evaluation of cloud radiation budgets. Here we characterize the mid-level clouds over the southeast Atlantic using lidar- and radar-based satellite cloud retrievals and observations collected in September 2016 during the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) field campaign. We find that mid-level clouds over the southeast Atlantic are relatively common, with the majority of the clouds occurring between altitudes of 5 and 7 km and at temperatures between 0 and −20 ∘C. The mid-level clouds occur at the top of a moist mid-tropospheric smoke-aerosol layer, most frequently between August and October, and closer to the southern African coast than farther offshore. They occur more frequently during the night than during the day. Between July and October, approximately 64 % of the mid-level clouds had a geometric cloud thickness less than 1 km, corresponding to a cloud optical depth of less than 4. A lidar-based depolarization–backscatter relationship for September 2016 indicates that the mid-level clouds are liquid-only clouds with no evidence of the existence of ice. In addition, a polarimeter-derived cloud droplet size distribution indicates that approximately 85 % of the September 2016 mid-level clouds had an effective radius less than 7 µm, which could further discourage the ability of the clouds to glaciate. These clouds are mostly associated with synoptically modulated mid-tropospheric moisture outflow that can be linked to the detrainment from the continental-based clouds. Overall, the supercooled mid-level clouds reduce the radiative cooling rates of the underlying low-altitude cloud tops by approximately 10 K d−1, thus influencing the regional cloud radiative budget.
Highlights
Clouds over the southeast Atlantic, as one of the world’s major subtropical stratocumulus clouds (Klein and Hartmann, 1993), contribute importantly to the uncertainties in global climate change projections (Soden and Vecchi, 2011)
We focus on the region north of 20◦ S and examine the properties of the mid-level clouds using the observations during the ORACLES-2016 campaign and the merged CloudSat– CALIPSO datasets
While much attention has focused on the lowlevel stratocumulus clouds due to their spatial extent, persistence through the annual cycle, and regional climate impacts, as well as the aerosol–cloud interactions that are associated with the elevated smoke aerosols, no study has yet focused on the characteristics of the mid-level clouds that occur over the southeast Atlantic
Summary
Clouds over the southeast Atlantic, as one of the world’s major subtropical stratocumulus clouds (Klein and Hartmann, 1993), contribute importantly to the uncertainties in global climate change projections (Soden and Vecchi, 2011). Models consistently underestimate the mid-level clouds by simulating less than 40 % of the observed global distribution (Zhang et al, 2005) One reason for this underestimation is the misrepresentation of potential mixed-phase processes whereby liquid-water droplets and ice crystals may coexist and persist for long periods, presenting a unique challenge for global model parameterizations (e.g., Liu and Krueger, 1998). Passive shortwave spectral measurements made by the accompanying Research Scanning Polarimeter (RSP; Alexandrov et al, 2016) are novel in that properties of the mid-level cloud can be determined independently of those from the underlying low clouds These measurements provided the first airborne observations of the mid-level cloud over the southeast Atlantic and confirmed the cloud’s prevalence. We use the aircraft measurements taken during the September 2016 ORACLES field campaign along with the CALIPSO only and CloudSat–CALIPSO merged datasets to document the characteristics and properties of the mid-level clouds above the southeast Atlantic stratocumulus clouds
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have