Abstract

The authors demonstrate the stimulation of the magnetization switching process of a Ni81Fe19 ellipsoid, which is dominated by domain nucleation and propagation, by applying a transverse microwave field. The study of the quasistatic switching behavior under the influence of a microwave field was performed using longitudinal magneto-optic Kerr effect magnetometry. A strong reduction of the coercive field for microwave frequencies between 500 and 900MHz has been observed, which can be attributed to two different mechanisms: microwave stimulated enhancement of domain nucleation and microwave stimulated growth of the reversed domain. The authors prove that heating is not the origin of the reduction of the coercive field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.