Abstract
Microwave heating (MW) is known for its efficacy in promoting transesterification for biodiesel production. However, the microwave-induced catalysis, linked to catalyst absorbing capability, remains poorly understood. Herein, a class of alkaline catalysts with strong microwave absorption were synthesized, validating their positive impact on transesterification. Various methods were used to reveal the relationship between microwave absorbing capacity and physicochemical properties of the synthesized catalyst (KF/Mg-MIL). Results indicated the previously recognized basicity’s role for KF/Mg-MIL was surpassed by microwave absorbing capability (permittivity and permeability) in MW (2.45 GHz). KF/Mg-MIL, with εr = 4.94′-j1.09″ and μr = 1.03′-j0.024″, efficiently transformed microwave into thermal energy via the dielectric loss and magnetic loss, saving 50 % energy consumption and reducing 1051.61 kg CO2 for per ton biodiesel compared to water bath heating (WB). Notably, “non-thermal” effect was observed with KF/Mg-MIL in MW, which reduced activation energy by 2.49 kJ/mol and increased the frequency factor by 793.32 min−1 in comparison to WB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.