Abstract

Metal-organic frameworks (MOFs) have been verified as ideal precursors for preparing highly effective microwave absorbers. However, it is still challenging to fabricate a thin, lightweight, and well-organized nanostructure with strong microwave absorption (MA) capability and wide absorption bandwidth. In this study, hollow cube dual-semiconductor Ln2O3/MnO/C (Ln = Nd, Gd, Er) nanocomposites, which are effective microwave absorbers, have been fabricated via one-step high-temperature carbonization of Ln-Mn-MOFs. The effect of band gap on the MA performance of various nanocomposites synthesized at the same carbonization temperature is investigated. Gd2O3/MnO/C-800 shows superior MA capacity with maximum reflection loss (RLmax) of -64.4 dB at 12.8 GHz and 1.86 mm-thickness. When the thickness is 1.44 mm, the RL value is obtained as -52.7 dB at 16.8 GHz, and at a low frequency of 4.36 GHz and thickness of 4.59 mm, the RL value reaches -56.4 dB. Further, the effect of temperature on the MA properties of Gd2O3/MnO/C is examined. The results reveal that Gd2O3/MnO/C-700 has an ultrahigh MA bandwidth of 6.6 GHz, covering the entire Ku bands at 2.09 mm-thickness. Overall, this work demonstrates a facile strategy to construct hollow, homogeneous ternary composites with outstanding MA performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.