Abstract

AlxCoCuNiTi (x = 0, 0.4, and 1) high-entropy alloy coatings on 45 steel substrates were prepared by laser cladding, and their phase structure, microstructure, element partition, and wear behavior were investigated. The results show that the AlxCoCuNiTi (x = 0, 0.4, and 1) coatings have a dual-phase structure of FCC and BCC. With the increase of x from 0 to 1, the content of the FCC phase decreases from 66.9 wt.% to 14.3 wt.%, while the content of the BCC phase increases from 33.1 wt.% to 85.7 wt.%. When x = 0.4, the lattice constants of the two phases are the largest, and their densities are the smallest. The microstructure of the AlxCoCuNiTi (x = 0, 0.4, and 1) coatings is composed of BCC-phase dendrites and FCC-phase interdendrite regions. Ti is mainly enriched in the primary phase or BCC dendrites, Cu is enriched in the interdendrite regions, and Al is enriched in the dendrites. The friction coefficients of AlxCoCuNiTi (x = 0, 0.4, and 1) coatings during wear tests are 0.691, 0.691, and 0.627, respectively. The lowering of the wear friction coefficient when increasing the Al content is mainly related to the change in phase structure, microstructure, and wear mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.