Abstract
Pitting Corrosion behaviour of similar and dissimilar metal welds of three classes of stainless steels, namely, austenitic stainless steel (AISI 304), ferritic stainless steel (AISI 430) and duplex stainless steel (AISI 2205), has been studied. Three regions of the weldment, i.e. fusion zone, heat affected zone and unaffected parent metal, were subjected to corrosion studies. Electron beam and friction welds have been compared. Optical, scanning electron microscopy and electron probe analysis were carried out to determine the mechanism of corrosion behaviour. Dissimilar metal electron beam welds of austenitic–ferritic (A–F), ferritic–duplex (F–D) and austenitic–duplex stainless steel (A–D) welds contained coarse grains which are predominantly equiaxed on austenitic and duplex stainless steel side while they were columnar on the ferritic stainless steel side. Microstructural features in the central region of dissimilar stainless steel friction welds exhibit fine equiaxed grains due to dynamic recrystallisation as a result of thermomechanical working during welding and is confined to ferritic stainless steel side in the case of A–F, D–F welds and duplex stainless steel side in the case of D–A welds. Beside this region bent and elongated grains were observed on ferritic stainless steel side in the case of A–F, D–F welds and duplex stainless steel side in the case of D–A welds. Interdiffusion of elements was significant in electron beam welding and insignificant in friction welds. Pitting corrosion has been observed to be predominantly confined to heat affected zone (HAZ) close to fusion boundary of ferritic stainless steel interface of A–F electron beam and D–F electron beam and friction weldments. The pitting resistance of stainless steel electron beam weldments was found to be lower than that of parent metal as a result of segregation and partitioning of alloying elements. In general, friction weldments exhibited better pitting corrosion resistance due to lower incidence of carbides in the microstructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.