Abstract

Microstructure and mechanical properties of similar and dissimilar welds of austenitic stainless steel (AISI 304), ferritic stainless steel (AISI 430), and duplex stainless steel (AISI 2205) have been studied. Welding processes electron beam welding and friction welding were used. Optical, scanning electron microscopy, and electron probe microscopy were carried out to study the microstructural changes. Residual stress, hardness, tensile strength, and impact toughness testing were conducted to study mechanical behavior. Dissimilar metal electron beam welds of austenitic–ferritic, ferritic–duplex, and austenitic–duplex stainless steel welds contained coarse grains, which are predominantly equiaxed on austenitic, duplex stainless steel side, and they are columnar on the ferritic stainless steel side. Diffusion of elements was significant in electron beam welding and insignificant in friction welds. Austenitic–ferritic stainless steel exhibited tensile residual stress on the ferritic stainless steel side adjacent to the interface, compressive stresses on the austenitic stainless steel side that matches with the delta ferrite microstructure observed in this region. High compressive stresses were noted on duplex stainless steel side interface compared to austenitic stainless side interface. The highest tensile strength was observed in duplex–austenitic stainless steel joints. The impact strength and notch tensile strength of electron beam weldments are higher than the friction weldments. All electron beam and friction welds showed toughness lower than parent metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call