Abstract

In this study, the microstructure and mechanical properties of the as-cast and as-annealed CoCrFeNiWx (x = 0, 0.2, 0.4 and 0.6, x value in molar ratio) high-entropy alloys were investigated. Both W-addition and annealing treatment were conducive to the formation of the μ phase in CoCrFeNiWx alloys. With the increase of x value, the microstructures of the as-cast HEAs evolved from single-phase solid solution (x = 0, 0.2) to hypoeutectic structure (x = 0.4), then to hypereutectic structure (x = 0.6). The as-cast CoCrFeNiW0.4 alloy exhibited a tensile strength of 690.7 MPa with a considerable elongation of 33.1%, which resulted from solid solution strengthening and second phase strengthening. After annealing, the as-annealed CoCrFeNiW0.4 alloy showed an increased tensile strength of 970.9 MPa, owing to the precipitation of μ-phase particles. Deformed microstructures indicated that cracks generated from μ-phase precipitates of different sizes, and suppressed by the ductile FCC solid solution. Moreover, the high-density dislocation tangles around the μ-phase precipitates lead to a high strain hardening rate, which improved the strength significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.