Abstract

Abstract— The nucleation and growth of small naturally initiated cracks have been investigated on Ti 6 Al 4V alloys, with bimodal or globular microstructures. Tests have been performed in air at a stress amplitude near 0.75 of the yield stress. The influence of microstructure on fatigue damage is described and the differences in fatigue life of some titanium alloys are explained. The effect of microstructure on fatigue resistance is mainly related to the early stages of damage including initiation and small crack growth. Coalescence processes favoured by a high density of initiated surface microcracks in fine α grain material, or rapid initiation of large cracks in coarse α colonies, explains low fatigue resistance or lifetime scattering in globular alloys. Small crack growth retardation due to α/β barriers associated with a low surface crack density, limiting coalescence processes, explains the highest resistance of bimodal structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.