Abstract

In situ ultrasonic fatigue with a cyclic frequency of 20kHz was employed in an environmental scanning electron microscope (ESEM) to characterize fatigue crack formation and growth in the near alpha titanium alloy Ti–6242S. The role of environment on small fatigue crack initiation and growth was investigated in vacuum and in variable pressures of saturated water vapor, as well as in laboratory air. Small crack growth behavior from cracks initiated at FIB-produced micro-notches indicated a significant environmental dependence, with fatigue crack growth rates increasing with increasing partial pressures of water vapor. Environment also influenced crack initiation lifetime in that cracks initiated earlier in laboratory air than in vacuum or saturated water vapor environments. Transgranular, crystallographic crack growth was observed in each environment, with the crack path in primary α grains producing facets parallel to basal planes when crack size was small. Small crack growth resistance had a marked sensitivity to microstructural features, such as α/α grain boundaries with high misorientation and α/α +β boundaries. These initial investigations demonstrate the usefulness of in situ ultrasonic fatigue instrumentation (UF-SEM) as a new tool for the characterization of environmental and microstructural influences on very high cycle fatigue (VHCF) behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.