Abstract

Material failure is ubiquitous, with implications from geology to everyday life and material science. It often involves sudden, unpredictable events, with little or no macroscopically detectable precursors. A deeper understanding of the microscopic mechanisms eventually leading to failure is clearly required, but experiments remain scarce. Here, we show that the microscopic dynamics of a colloidal gel, a model network-forming system, exhibit dramatic changes that precede its macroscopic failure by thousands of seconds. Using an original setup coupling light scattering and rheology, we simultaneously measure the macroscopic deformation and the microscopic dynamics of the gel, while applying a constant shear stress. We show that the network failure is preceded by qualitative and quantitative changes of the dynamics, from reversible particle displacements to a burst of irreversible plastic rearrangements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.